How Google’s 'internal RL' could unlock long-horizon AI agents

Bearish -50.0
Researchers at Google have developed a technique that makes it easier for AI models to learn complex reasoning tasks that usually cause LLMs to hallucinate or fall apart. Instead of training LLMs through next-token prediction, their technique, called internal reinforcement learning (internal RL), steers the model’s internal activations toward developing a high-level step-by-step solution for the input problem. Ultimately, this could provide a scalable path for creating autonomous agents that can handle complex reasoning and real-world robotics without needing constant, manual guidance.The limits of next-token predictionReinforcement learning plays a key role in post-training LLMs, particularly for complex reasoning tasks that require long-horizon planning. However, the problem lies in the
Read Source Login to use Pulse AI

Pulse AI Analysis

Pulse analysis not available yet. Click "Get Pulse" above.

This analysis was generated using Pulse AI, Glideslope's proprietary AI engine designed to interpret market sentiment and economic signals. Results are for informational purposes only and do not constitute financial advice.